QConnect / Client / get_recommendations
get_recommendations¶
- QConnect.Client.get_recommendations(**kwargs)¶
- Warning- This API will be discontinued starting June 1, 2024. To receive generative responses after March 1, 2024, you will need to create a new Assistant in the Amazon Connect console and integrate the Amazon Q in Connect JavaScript library (amazon-q-connectjs) into your applications. - Retrieves recommendations for the specified session. To avoid retrieving the same recommendations in subsequent calls, use NotifyRecommendationsReceived. This API supports long-polling behavior with the - waitTimeSecondsparameter. Short poll is the default behavior and only returns recommendations already available. To perform a manual query against an assistant, use QueryAssistant.- Danger- This operation is deprecated and may not function as expected. This operation should not be used going forward and is only kept for the purpose of backwards compatiblity. - See also: AWS API Documentation - Request Syntax- response = client.get_recommendations( assistantId='string', sessionId='string', maxResults=123, waitTimeSeconds=123, nextChunkToken='string' ) - Parameters:
- assistantId (string) – - [REQUIRED] - The identifier of the Amazon Q in Connect assistant. Can be either the ID or the ARN. URLs cannot contain the ARN. 
- sessionId (string) – - [REQUIRED] - The identifier of the session. Can be either the ID or the ARN. URLs cannot contain the ARN. 
- maxResults (integer) – The maximum number of results to return per page. 
- waitTimeSeconds (integer) – The duration (in seconds) for which the call waits for a recommendation to be made available before returning. If a recommendation is available, the call returns sooner than - WaitTimeSeconds. If no messages are available and the wait time expires, the call returns successfully with an empty list.
- nextChunkToken (string) – The token for the next set of chunks. Use the value returned in the previous response in the next request to retrieve the next set of chunks. 
 
- Return type:
- dict 
- Returns:
- Response Syntax- { 'recommendations': [ { 'recommendationId': 'string', 'document': { 'contentReference': { 'knowledgeBaseArn': 'string', 'knowledgeBaseId': 'string', 'contentArn': 'string', 'contentId': 'string', 'sourceURL': 'string', 'referenceType': 'WEB_CRAWLER'|'KNOWLEDGE_BASE' }, 'title': { 'text': 'string', 'highlights': [ { 'beginOffsetInclusive': 123, 'endOffsetExclusive': 123 }, ] }, 'excerpt': { 'text': 'string', 'highlights': [ { 'beginOffsetInclusive': 123, 'endOffsetExclusive': 123 }, ] } }, 'relevanceScore': 123.0, 'relevanceLevel': 'HIGH'|'MEDIUM'|'LOW', 'type': 'KNOWLEDGE_CONTENT'|'GENERATIVE_RESPONSE'|'GENERATIVE_ANSWER'|'DETECTED_INTENT'|'GENERATIVE_ANSWER_CHUNK'|'BLOCKED_GENERATIVE_ANSWER_CHUNK'|'INTENT_ANSWER_CHUNK'|'BLOCKED_INTENT_ANSWER_CHUNK'|'EMAIL_RESPONSE_CHUNK'|'EMAIL_OVERVIEW_CHUNK'|'EMAIL_GENERATIVE_ANSWER_CHUNK', 'data': { 'reference': { 'contentReference': { 'knowledgeBaseArn': 'string', 'knowledgeBaseId': 'string', 'contentArn': 'string', 'contentId': 'string', 'sourceURL': 'string', 'referenceType': 'WEB_CRAWLER'|'KNOWLEDGE_BASE' }, 'generativeReference': { 'modelId': 'string', 'generationId': 'string' } }, 'details': { 'contentData': { 'textData': { 'title': { 'text': 'string', 'highlights': [ { 'beginOffsetInclusive': 123, 'endOffsetExclusive': 123 }, ] }, 'excerpt': { 'text': 'string', 'highlights': [ { 'beginOffsetInclusive': 123, 'endOffsetExclusive': 123 }, ] } }, 'rankingData': { 'relevanceScore': 123.0, 'relevanceLevel': 'HIGH'|'MEDIUM'|'LOW' } }, 'generativeData': { 'completion': 'string', 'references': [ {'... recursive ...'}, ], 'rankingData': { 'relevanceScore': 123.0, 'relevanceLevel': 'HIGH'|'MEDIUM'|'LOW' } }, 'intentDetectedData': { 'intent': 'string', 'intentId': 'string' }, 'sourceContentData': { 'id': 'string', 'type': 'KNOWLEDGE_CONTENT', 'textData': { 'title': { 'text': 'string', 'highlights': [ { 'beginOffsetInclusive': 123, 'endOffsetExclusive': 123 }, ] }, 'excerpt': { 'text': 'string', 'highlights': [ { 'beginOffsetInclusive': 123, 'endOffsetExclusive': 123 }, ] } }, 'rankingData': { 'relevanceScore': 123.0, 'relevanceLevel': 'HIGH'|'MEDIUM'|'LOW' }, 'citationSpan': { 'beginOffsetInclusive': 123, 'endOffsetExclusive': 123 } }, 'generativeChunkData': { 'completion': 'string', 'references': [ {'... recursive ...'}, ], 'nextChunkToken': 'string' }, 'emailResponseChunkData': { 'completion': 'string', 'nextChunkToken': 'string' }, 'emailOverviewChunkData': { 'completion': 'string', 'nextChunkToken': 'string' }, 'emailGenerativeAnswerChunkData': { 'completion': 'string', 'references': [ {'... recursive ...'}, ], 'nextChunkToken': 'string' } } } }, ], 'triggers': [ { 'id': 'string', 'type': 'QUERY'|'GENERATIVE', 'source': 'ISSUE_DETECTION'|'RULE_EVALUATION'|'OTHER', 'data': { 'query': { 'text': 'string' } }, 'recommendationIds': [ 'string', ] }, ] } - Response Structure- (dict) – - recommendations (list) – - The recommendations. - (dict) – - Information about the recommendation. - recommendationId (string) – - The identifier of the recommendation. 
- document (dict) – - The recommended document. - contentReference (dict) – - A reference to the content resource. - knowledgeBaseArn (string) – - The Amazon Resource Name (ARN) of the knowledge base. 
- knowledgeBaseId (string) – - The identifier of the knowledge base. This should not be a QUICK_RESPONSES type knowledge base. 
- contentArn (string) – - The Amazon Resource Name (ARN) of the content. 
- contentId (string) – - The identifier of the content. 
- sourceURL (string) – - The web URL of the source content. 
- referenceType (string) – - The type of reference content. 
 
- title (dict) – - The title of the document. - text (string) – - Text in the document. 
- highlights (list) – - Highlights in the document text. - (dict) – - Offset specification to describe highlighting of document excerpts for rendering search results and recommendations. - beginOffsetInclusive (integer) – - The offset for the start of the highlight. 
- endOffsetExclusive (integer) – - The offset for the end of the highlight. 
 
 
 
- excerpt (dict) – - The excerpt from the document. - text (string) – - Text in the document. 
- highlights (list) – - Highlights in the document text. - (dict) – - Offset specification to describe highlighting of document excerpts for rendering search results and recommendations. - beginOffsetInclusive (integer) – - The offset for the start of the highlight. 
- endOffsetExclusive (integer) – - The offset for the end of the highlight. 
 
 
 
 
- relevanceScore (float) – - The relevance score of the recommendation. 
- relevanceLevel (string) – - The relevance level of the recommendation. 
- type (string) – - The type of recommendation. 
- data (dict) – - Summary of the recommended content. - reference (dict) – - Reference information about the content. - Note- This is a Tagged Union structure. Only one of the following top level keys will be set: - contentReference,- generativeReference. If a client receives an unknown member it will set- SDK_UNKNOWN_MEMBERas the top level key, which maps to the name or tag of the unknown member. The structure of- SDK_UNKNOWN_MEMBERis as follows:- 'SDK_UNKNOWN_MEMBER': {'name': 'UnknownMemberName'} - contentReference (dict) – - Reference information about the content. - knowledgeBaseArn (string) – - The Amazon Resource Name (ARN) of the knowledge base. 
- knowledgeBaseId (string) – - The identifier of the knowledge base. This should not be a QUICK_RESPONSES type knowledge base. 
- contentArn (string) – - The Amazon Resource Name (ARN) of the content. 
- contentId (string) – - The identifier of the content. 
- sourceURL (string) – - The web URL of the source content. 
- referenceType (string) – - The type of reference content. 
 
- generativeReference (dict) – - Reference information about the generative content. - modelId (string) – - The identifier of the LLM model. 
- generationId (string) – - The identifier of the LLM model. 
 
 
- details (dict) – - Details about the data. - Note- This is a Tagged Union structure. Only one of the following top level keys will be set: - contentData,- generativeData,- intentDetectedData,- sourceContentData,- generativeChunkData,- emailResponseChunkData,- emailOverviewChunkData,- emailGenerativeAnswerChunkData. If a client receives an unknown member it will set- SDK_UNKNOWN_MEMBERas the top level key, which maps to the name or tag of the unknown member. The structure of- SDK_UNKNOWN_MEMBERis as follows:- 'SDK_UNKNOWN_MEMBER': {'name': 'UnknownMemberName'} - contentData (dict) – - Details about the content data. - textData (dict) – - Details about the content text data. - title (dict) – - The text of the document. - text (string) – - Text in the document. 
- highlights (list) – - Highlights in the document text. - (dict) – - Offset specification to describe highlighting of document excerpts for rendering search results and recommendations. - beginOffsetInclusive (integer) – - The offset for the start of the highlight. 
- endOffsetExclusive (integer) – - The offset for the end of the highlight. 
 
 
 
- excerpt (dict) – - The text of the document. - text (string) – - Text in the document. 
- highlights (list) – - Highlights in the document text. - (dict) – - Offset specification to describe highlighting of document excerpts for rendering search results and recommendations. - beginOffsetInclusive (integer) – - The offset for the start of the highlight. 
- endOffsetExclusive (integer) – - The offset for the end of the highlight. 
 
 
 
 
- rankingData (dict) – - Details about the content ranking data. - relevanceScore (float) – - The relevance level of the recommendation. 
- relevanceLevel (string) – - The relevance score of the content. 
 
 
- generativeData (dict) – - Details about the generative data. - completion (string) – - The LLM response. 
- references (list) – - The references used to generative the LLM response. - (dict) – - Summary of the data. 
 
- rankingData (dict) – - Details about the generative content ranking data. - relevanceScore (float) – - The relevance level of the recommendation. 
- relevanceLevel (string) – - The relevance score of the content. 
 
 
- intentDetectedData (dict) – - Details about the intent data. - intent (string) – - The detected intent. 
- intentId (string) – - The identifier of the detected intent. 
 
- sourceContentData (dict) – - Details about the content data. - id (string) – - The identifier of the source content. 
- type (string) – - The type of the source content. 
- textData (dict) – - Details about the source content text data. - title (dict) – - The text of the document. - text (string) – - Text in the document. 
- highlights (list) – - Highlights in the document text. - (dict) – - Offset specification to describe highlighting of document excerpts for rendering search results and recommendations. - beginOffsetInclusive (integer) – - The offset for the start of the highlight. 
- endOffsetExclusive (integer) – - The offset for the end of the highlight. 
 
 
 
- excerpt (dict) – - The text of the document. - text (string) – - Text in the document. 
- highlights (list) – - Highlights in the document text. - (dict) – - Offset specification to describe highlighting of document excerpts for rendering search results and recommendations. - beginOffsetInclusive (integer) – - The offset for the start of the highlight. 
- endOffsetExclusive (integer) – - The offset for the end of the highlight. 
 
 
 
 
- rankingData (dict) – - Details about the source content ranking data. - relevanceScore (float) – - The relevance level of the recommendation. 
- relevanceLevel (string) – - The relevance score of the content. 
 
- citationSpan (dict) – - Contains information about where the text with a citation begins and ends in the generated output. - beginOffsetInclusive (integer) – - Where the text with a citation starts in the generated output. 
- endOffsetExclusive (integer) – - Where the text with a citation ends in the generated output. 
 
 
- generativeChunkData (dict) – - Details about the generative chunk data. - completion (string) – - A chunk of the LLM response. 
- references (list) – - The references used to generate the LLM response. - (dict) – - Summary of the data. 
 
- nextChunkToken (string) – - The token for the next set of chunks. Use the value returned in the previous response in the next request to retrieve the next set of chunks. 
 
- emailResponseChunkData (dict) – - Streaming chunk data for email response generation containing partial response content. - completion (string) – - The partial or complete professional email response text with appropriate greetings and closings. 
- nextChunkToken (string) – - Token for retrieving the next chunk of streaming response data, if available. 
 
- emailOverviewChunkData (dict) – - Streaming chunk data for email overview containing partial overview content. - completion (string) – - The partial or complete overview text content in structured HTML format with customer issues, resolutions, and next steps. 
- nextChunkToken (string) – - Token for retrieving the next chunk of streaming overview data, if available. 
 
- emailGenerativeAnswerChunkData (dict) – - Streaming chunk data for email generative answers containing partial knowledge-based response content. - completion (string) – - The partial or complete text content of the generative answer response. 
- references (list) – - Source references and citations from knowledge base articles used to generate the answer. - (dict) – - Summary of the data. 
 
- nextChunkToken (string) – - Token for retrieving the next chunk of streaming response data, if available. 
 
 
 
 
 
- triggers (list) – - The triggers corresponding to recommendations. - (dict) – - A recommendation trigger provides context on the event that produced the referenced recommendations. Recommendations are only referenced in - recommendationIdsby a single RecommendationTrigger.- id (string) – - The identifier of the recommendation trigger. 
- type (string) – - The type of recommendation trigger. 
- source (string) – - The source of the recommendation trigger. - ISSUE_DETECTION: The corresponding recommendations were triggered by a Contact Lens issue. 
- RULE_EVALUATION: The corresponding recommendations were triggered by a Contact Lens rule. 
 
- data (dict) – - A union type containing information related to the trigger. - Note- This is a Tagged Union structure. Only one of the following top level keys will be set: - query. If a client receives an unknown member it will set- SDK_UNKNOWN_MEMBERas the top level key, which maps to the name or tag of the unknown member. The structure of- SDK_UNKNOWN_MEMBERis as follows:- 'SDK_UNKNOWN_MEMBER': {'name': 'UnknownMemberName'} - query (dict) – - Data associated with the QUERY RecommendationTriggerType. - text (string) – - The text associated with the recommendation trigger. 
 
 
- recommendationIds (list) – - The identifiers of the recommendations. - (string) – 
 
 
 
 
 
 - Exceptions- QConnect.Client.exceptions.ValidationException
- QConnect.Client.exceptions.AccessDeniedException
- QConnect.Client.exceptions.ResourceNotFoundException